Fatou's lemma

Fatou's lemma
French\ \ lema de Fatou
German\ \ Fatousches Lemma
Dutch\ \ lemma van Fatou
Italian\ \ lemma di Fatou
Spanish\ \ lema de Fatou
Catalan\ \ lema de Fatou
Portuguese\ \ lema de Fatou
Romanian\ \ lema lui Fatou
Danish\ \ Fatou's lemma
Norwegian\ \ Fatou's lemma
Swedish\ \ Fatou lemma
Greek\ \ λήμμα του Fatou
Finnish\ \ Fatoun apulause t. lemma
Hungarian\ \ Fatou-lemma
Turkish\ \ Fatou yardımcı önermesi; Fatou leması
Estonian\ \ Fatou lemma
Lithuanian\ \ Fatou lema; Fatu lema
Slovenian\ \ Fatou's lemma
Polish\ \ lemat Fatou
Russian\ \ лемма Фату
Ukrainian\ \ лема Фату
Serbian\ \ Фатоу лема
Icelandic\ \ Fatou er lemma
Euskara\ \ Fatou en lema
Farsi\ \ -
Persian-Farsi\ \ -
Arabic\ \ نتيجة ليما
Afrikaans\ \ Fatou se lemma
Chinese\ \ 法 托 引 理
Korean\ \ 파토우의 보조정리

Statistical terms. 2014.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Fatou's lemma — In mathematics, Fatou s lemma establishes an inequality relating the integral (in the sense of Lebesgue) of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after the French… …   Wikipedia

  • Fatou–Lebesgue theorem — In mathematics, the Fatou–Lebesgue theorem establishes a chain of inequalities relating the integrals (in the sense of Lebesgue) of the limit inferior and the limit superior of a sequence of functions to the limit inferior and the limit superior… …   Wikipedia

  • Lemma (mathematics) — In mathematics, a lemma (plural lemmata or lemmascite book |last= Higham |first= Nicholas J. |title= Handbook of Writing for the Mathematical Sciences |publisher= Society for Industrial and Applied Mathematics |year= 1998 |isbn= 0898714206 |pages …   Wikipedia

  • Fatou — Pierre Fatou Pierre Joseph Louis Fatou (* 28. Februar 1878 in Lorient; † 10. August 1929 in Pornichet) war ein französischer Mathematiker. Nach dem Studium an der École Normale Supérieure in Paris von 1898 bis 1900 arbeitete er ab 1901 am… …   Deutsch Wikipedia

  • Lemma von Fatou — Das Lemma von Fatou (nach Pierre Fatou) erlaubt in der Mathematik, das Lebesgue Integral des Limes inferior einer Funktionenfolge durch den Limes inferior der Folge der zugehörigen Lebesgue Integrale nach oben abzuschätzen. Es liefert damit eine… …   Deutsch Wikipedia

  • Pierre Fatou — Pierre Joseph Louis Fatou (28 February 1878, Lorient – 10 August 1929, Pornichet) was a French mathematician working in the field of complex analytic dynamics. He entered the École Normale Supérieure in Paris in 1898 to study mathematics and… …   Wikipedia

  • Pierre Fatou — Pierre Joseph Louis Fatou (* 28. Februar 1878 in Lorient; † 10. August 1929 in Pornichet) war ein französischer Mathematiker. Nach dem Studium an der École Normale Supérieure in Paris von 1898 bis 1900 arbeitete er ab 1901 am Observatorium in… …   Deutsch Wikipedia

  • List of mathematics articles (F) — NOTOC F F₄ F algebra F coalgebra F distribution F divergence Fσ set F space F test F theory F. and M. Riesz theorem F1 Score Faà di Bruno s formula Face (geometry) Face configuration Face diagonal Facet (mathematics) Facetting… …   Wikipedia

  • Dominated convergence theorem — In measure theory, Lebesgue s dominated convergence theorem provides sufficient conditions under which two limit processes commute, namely Lebesgue integration and almost everywhere convergence of a sequence of functions. The dominated… …   Wikipedia

  • List of lemmas — This following is a list of lemmas (or, lemmata , i.e. minor theorems, or sometimes intermediate technical results factored out of proofs). See also list of axioms, list of theorems and list of conjectures. 0 to 9 *0/1 Sorting Lemma ( comparison… …   Wikipedia

  • Lebesgue integration — In mathematics, the integral of a non negative function can be regarded in the simplest case as the area between the graph of that function and the x axis. Lebesgue integration is a mathematical construction that extends the integral to a larger… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”